Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing.

نویسندگان

  • S J Boulton
  • S P Jackson
چکیده

In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double-strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2, SIR3 and SIR4, three genes shown previously to function in TPE, are essential for Ku-dependent DSB repair. As is the case for Ku-deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error-prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku-associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50, MRE11 and XRS2 function both in Ku-dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by Rif proteins

Yku70p/Yku80p, the yeast Ku protein homologue, is a DNA end-binding heterodimer involved in non-homologous end joining. It also binds to telomeres, where it plays an important role in the maintenance of telomeric DNA structure [1] [2] [3] [4] [5]. Ku protein, together with Rap1p, a telomeric DNA (TG(1-3) repeat)-binding protein, is also required to initiate transcriptional silencing, or telomer...

متن کامل

Mutually Exclusive Binding of Telomerase RNA and DNA by Ku Alters Telomerase Recruitment Model

In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhom...

متن کامل

Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast.

The Ku70-Ku80 heterodimer is a conserved protein complex essential for the non-homologous end-joining pathway. Ku proteins are also involved in telomere maintenance, although their precise roles remain to be elucidated. In fission yeast, pku70(+), the gene encoding the Ku70 homologue, has been reported. Here we report the identification and characterization of pku80(+), the gene encoding Ku80. ...

متن کامل

DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p

In eukaryotic cells, surveillance mechanisms detect and respond to DNA damage by triggering cell-cycle arrest and inducing the expression of DNA-repair genes [1]. In budding yeast, a single DNA double-strand break (DSB) is sufficient to trigger cell-cycle arrest [2]. One highly conserved pathway for repairing DNA DSBs is DNA non-homologous end-joining (NHEJ), which depends on the DNA end-bindin...

متن کامل

Ku Must Load Directly onto the Chromosome End in Order to Mediate Its Telomeric Functions

The Ku heterodimer associates with the Saccharomyces cerevisiae telomere, where it impacts several aspects of telomere structure and function. Although Ku avidly binds DNA ends via a preformed channel, its ability to associate with telomeres via this mechanism could be challenged by factors known to bind directly to the chromosome terminus. This has led to uncertainty as to whether Ku itself bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 1998